Telefon:
+49 (0)241 95 163 153
Fax:
+49 (0)241 95 163 155
E-Mail:
orders@antikoerper-online.de

CDK5 Produkte

(Cyclin-Dependent Kinase 5 (CDK5))

Kategorien

Proline-directed serine/threonine-protein kinase essential for neuronal cell cycle arrest and differentiation and may be involved in apoptotic cell death in neuronal diseases by triggering abortive cell cycle re-entry. Interacts with D1 and D3- type G1 cyclins. Phosphorylates SRC, NOS3, VIM/vimentin, p35/CDK5R1, MEF2A, SIPA1L1, SH3GLB1, PXN, PAK1, MCAM/MUC18, SEPT5, SYN1, DNM1, AMPH, SYNJ1, CDK16, RAC1, RHOA, CDC42, TONEBP/NFAT5, MAPT/TAU, MAP1B, histone H1, p53/TP53, HDAC1, APEX1, PTK2/FAK1, huntingtin/HTT, ATM, MAP2, NEFH and NEFM. Regulates several neuronal development and physiological processes including neuronal survival, migration and differentiation, axonal and neurite growth, synaptogenesis, oligodendrocytes differentiation, synaptic plasticity and neurotransmission, by phosphorylating key proteins. Activated by interaction with CDK5R1 (p35) and ATP6V0D1 (p39), especially in post-mitotic neurons, and promotes CDK5R1 (p35) expression in an autostimulation loop. Phosphorylates many downstream substrates such as Rho and Ras family small GTPases (e.g. PAK1, RAC1, RHOA, CDC42) or microtubule-binding proteins (e.g. MAPT/TAU, MAP2, MAP1B), and modulates actin dynamics to regulate neurite growth and/or spine morphogenesis. Phosphorylates also exocytosis associated proteins such as MCAM/MUC18, SEPT5, SYN1, and PCTAIRE 1/CDK16 as well as endocytosis associated proteins such as DNM1, AMPH and SYNJ1 at synaptic terminals. In the mature central nervous system (CNS), regulates neurotransmitter movements by phosphorylating substrates associated with neurotransmitter release and synapse plasticity\; synaptic vesicle exocytosis, vesicles fusion with the presynaptic membrane, and endocytosis. Promotes cell survival by activating anti-apoptotic proteins BCL2 and STAT3, and negatively regulating of JNK3/MAPK10 activity. Phosphorylation of p53/TP53 in response to genotoxic and oxidative stresses enhances its stabilization by preventing ubiquitin ligase-mediated proteasomal degradation, and induces transactivation of p53/TP53 target genes, thus regulating apoptosis. Phosphorylation of p35/CDK5R1 enhances its stabilization by preventing calpain-mediated proteolysis producing p25/CDK5R1 and avoiding ubiquitin ligase-mediated proteasomal degradation. During aberrant cell-cycle activity and DNA damage, p25/CDK5 activity elicites cell-cycle activity and double-strand DNA breaks that precedes neuronal death by deregulating HDAC1. DNA damage triggered phosphorylation of huntingtin/HTT in nuclei of neurons protects neurons against polyglutamine expansion as well as DNA damage mediated toxicity. Phosphorylation of PXN reduces its interaction with PTK2/FAK1 in matrix-cell focal adhesions (MCFA) during oligodendrocytes (OLs) differentiation. Negative regulator of Wnt/beta-catenin signaling pathway. Activator of the GAIT (IFN-gamma-activated inhibitor of translation) pathway, which suppresses expression of a post-transcriptional regulon of proinflammatory genes in myeloid cells\; phosphorylates the linker domain of glutamyl-prolyl tRNA synthetase (EPRS) in a IFN-gamma- dependent manner, the initial event in assembly of the GAIT complex. Phosphorylation of SH3GLB1 is required for autophagy induction in starved neurons. Phosphorylation of TONEBP/NFAT5 in response to osmotic stress mediates its rapid nuclear localization. MEF2 is inactivated by phosphorylation in nucleus in response to neurotoxin, thus leading to neuronal apoptosis. APEX1 AP-endodeoxyribonuclease is repressed by phosphorylation, resulting in accumulation of DNA damage and contributing to neuronal death. NOS3 phosphorylation down regulates NOS3-derived nitrite (NO) levels. SRC phosphorylation mediates its ubiquitin- dependent degradation and thus leads to cytoskeletal reorganization. May regulate endothelial cell migration and angiogenesis via the modulation of lamellipodia formation. Involved in dendritic spine morphogenesis by mediating the EFNA1- EPHA4 signaling.

antibodies-online.com steht für hochwertige Forschungsprodukte. Suchen, finden und bestellen Sie Tools mit umfangreichen Validierungsdaten, Bildern, Referenzen. Unser wissenschaftlicher Kundenservice steht Ihnen jederzeit zur Verfügung, wenn Sie Fragen zur Auswahl oder Anwendung unserer Produkte haben.

Ausgewählte CDK5 Kategorien

CDK5 Antikörper

High quality antibodies with extensive validation data.

CDK5 ELISA Kits

Reliable ELISA kits for a wide range of species.

CDK5 Proteine

Proteins for various applications incl. WB, ELISA, IF etc.

Empfohlene CDK5 Antikörper

Produkt
Reaktivität
Applikation
Validierungen
Kat. Nr.
Menge
Datenblatt
Reaktivität Human, Monkey, Rat
Applikation WB, ELISA, IHC, FACS, ICC
Validierungen
  • (2)
  • (5)
Kat. Nr. ABIN969041
Menge 100 μL
Datenblatt Datenblatt
Reaktivität Human
Applikation WB, IF, IP
Validierungen
  • (5)
Kat. Nr. ABIN6138319
Menge 100 μL
Datenblatt Datenblatt
Reaktivität Human
Applikation WB, ELISA, IHC, IF
Validierungen
  • (4)
Kat. Nr. ABIN7148931
Menge 100 μg
Datenblatt Datenblatt

Empfohlene CDK5 ELISA Kits

Produkt
Reaktivität
Analytical Method
Validierungen
Kat. Nr.
Menge
Datenblatt
Reaktivität Rat
Analytical Method Quantitative Sandwich ELISA
Validierungen
  • (1)
Kat. Nr. ABIN6966168
Menge 96 tests
Datenblatt Datenblatt
Reaktivität Human
Analytical Method Quantitative Sandwich ELISA
Validierungen
  • (1)
Kat. Nr. ABIN6966169
Menge 96 tests
Datenblatt Datenblatt
Reaktivität Mouse
Analytical Method Quantitative Sandwich ELISA
Validierungen
  • (1)
Kat. Nr. ABIN6966167
Menge 96 tests
Datenblatt Datenblatt

Empfohlene CDK5 Proteine

Produkt
Reaktivität
Source
Validierungen
Kat. Nr.
Menge
Datenblatt
Reaktivität Human
Source Wheat germ
Validierungen
  • (1)
  • (1)
Kat. Nr. ABIN1348956
Menge 10 μg
Datenblatt Datenblatt
Reaktivität Human
Source Insect Cells
Validierungen
  • (2)
Kat. Nr. ABIN5570449
Menge 5 μg
Datenblatt Datenblatt
Reaktivität Human
Source Wheat germ
Validierungen
  • (1)
Kat. Nr. ABIN1348960
Menge 10 μg
Datenblatt Datenblatt

Neueste Publikationen zu unseren CDK5 Produkten

Terse, Amin, Hall, Bhaskar, B K, Utreras, Pareek, Pant, Kulkarni: "Protocols for Characterization of Cdk5 Kinase Activity." in: Current protocols, Vol. 1, Issue 10, pp. e276, (2021) (PubMed).

Amin, Zheng, Bk, Shukla, Skuntz, Grant, Steiner, Bhaskar, Pant: "The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35." in: Molecular biology of the cell, Vol. 27, Issue 21, pp. 3221-3232, (2017) (PubMed).

Cao, Jia, Wei, Liu, Liu, Li: "Traditional Chinese Medicine Huannao Yicong Decoction Extract Decreases Tau Hyperphosphorylation in the Brain of Alzheimer's Disease Model Rats Induced by Aβ1-42." in: Evidence-based complementary and alternative medicine : eCAM, Vol. 2016, pp. 6840432, (2016) (PubMed).

Yin, Qi, Ren, Wang, Jiang, Feng, Cui: "Roscovitine treatment caused impairment of fertilizing ability in mice." in: Toxicology letters, Vol. 237, Issue 3, pp. 200-9, (2015) (PubMed).

Zhang, Lu, Mao, Ahmed, Yang, Zhou, Jennings, Rodriguez-Aguayo, Lopez-Berestein, Miranda, Qiao, Baladandayuthapani, Li, Sood, Liu, Le, Bast: "CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis." in: PLoS ONE, Vol. 10, Issue 7, pp. e0131833, (2015) (PubMed).

Li, Wang, Guo, Huang, Zhao, Zhu, Ma, Liang, Zhang, Huang, Wan: "Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism." in: Experimental and therapeutic medicine, Vol. 10, Issue 5, pp. 1643-1652, (2015) (PubMed).

Li, Zhang, Zhu, Zhang, Lin, Xu, Yang, Hao, Zhang: "A new treatment for cognitive disorders related to in utero exposure to alcohol." in: Neural regeneration research, Vol. 8, Issue 18, pp. 1702-13, (2014) (PubMed).

Li, Liu, Zhang, Ye, Qiao, Ling, Wu, Zhang, Yu: "Characterization of a novel human CDK5 splicing variant that inhibits Wnt/beta-catenin signaling." in: Molecular biology reports, Vol. 37, Issue 5, pp. 2415-21, (2010) (PubMed).

Choi, Lee, Park, Sung, Lee, Shin, Ryu, Kim: "Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population." in: Journal of human genetics, Vol. 54, Issue 5, pp. 298-303, (2009) (PubMed).

Zhang, Herrup: "Cdk5 and the non-catalytic arrest of the neuronal cell cycle." in: Cell cycle (Georgetown, Tex.), Vol. 7, Issue 22, pp. 3487-90, (2008) (PubMed).

Synonyme und alternative Namen zu CDK5

cyclin dependent kinase 5 (CDK5), cyclin-dependent kinase 5 (Cdk5), Cyclin-dependent kinase 5 (Cdk5), cyclin-dependent kinase 5 (cdk5), cyclin-dependent kinase 5 L homeolog (cdk5.L), cyclin dependent kinase 5 (Cdk5), Cyclin-dependent-like kinase 5 (cdk-5), AW048668, CDK5, cdk5, CG8203, Crk6, DmCdk5, Dmel\\CG8203, PSSALRE, zgc:101604

Bezeichner auf Proteinebene für CDK5

  • TPKII catalytic subunit
  • cell division protein kinase 5
  • protein kinase CDK5 splicing
  • serine/threonine-protein kinase PSSALRE
  • tau protein kinase II catalytic subunit
  • CR6 protein kinase
  • CG8203-PA
  • Cdk5-PA
  • PDPK
  • proline-directed protein kinase 33 kDa subunit
  • neuronal cyclin-dependent kinase 5
  • Cell division protein kinase 5
  • cyclin-dependent-like kinase 5
Sie sind hier:
Kundenservice