RFP Antikörper (Red Fluorescent Protein)

Details for Product anti-RFP Antibody No. ABIN129578
Dieser RFP Antikörper ist unkonjugiert
ELISA, Flow Cytometry (FACS), Immunofluorescence (IF), Immunohistochemistry (IHC), Immunohistochemistry (Frozen Sections) (IHC (fro)), Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)), Immunoprecipitation (IP), Western Blotting (WB)
Key features
  • Frequently cited in scientific publications with 200+ citations
  • Validated inhouse for relevant applications
  • Extensive validation report for IF provided by one of your peers
  • Designed to detect RFP and its variants
Verwendungszweck Polyclonal RFP antibody is designed to detect RFP and its variants.
Immunogen The immunogen is a Red Fluorescent Protein (RFP) fusion protein corresponding to the full length amino acid sequence (234aa) derived from the mushroom polyp coral Discosoma.
Immunogen Type: Recombinant Protein
Isotyp IgG
Kreuzreaktivität (Details) Expect reactivity against RFP and its variants: mCherry, tdTomato, mBanana, mPlum, mOrange and mStrawberry. Assay by immunoelectrophoresis resulted in a single precipitin arc against anti-Rabbit Serum and purified and partially purified Red Fluorescent Protein (Discosoma).
No reaction was observed against Human, Mouse or Rat serum proteins.

This product was prepared from monospecific antiserum by immunoaffinity chromatography using Red Fluorescent Protein (Discosoma) coupled to agarose beads followed by solid phase adsorption(s) to remove any unwanted reactivities.

Preadsorption: Pre-adsorbed

Sterilität Sterile filtered
Andere Bezeichnung RFP
Hintergrund Synonyms: DsRed, rDsRed, Discosoma sp. Red Fluorescent Protein, Red fluorescent protein drFP583
Fluorescent proteins such as Discosoma Red Fluorescent Protein (DsRed) from sea anemone Discosoma sp. mushroom or green fluorescent protein (GFP) from Aequorea victoria jellyfish are widely used in research practice. Fusion RFP and GFP commonly serve as marker for gene expression and protein localization. As DsRed and GFP share only 19% identity, therefore, in general, anti-GFP antibodies do not recognize DsRed protein and vice versa. Structurally, Discosoma red fluorescent protein is similar to Aequorea green fluorescent protein in terms of its overall fold (a β-can) and chromophore-formation chemistry. However, Discosoma red fluorescent protein undergoes an additional step in the chromophore maturation and obligates tetrameric structure.
Applikations-hinweise Suggested dilutions:
ELISA: 1:28,700 - 1:48,700
IF: 1:200 - 1:2,000
FACS: 1:200 - 1:2,000
WB: 1:1,000 - 1:5,000
IHC: 1:200 - 1:2,000
IP: User Optimized

This antibody can be used to detect RFP by ELISA (sandwich or capture) for the direct binding of antigen. Biotin conjugated polyclonal anti-RFP used in a sandwich ELISA with unconjugated anti-RFP is well suited to titrate RFP in solution. The detection antibody conjugated to biotin is subsequently reacted with streptavidin conjugated HRP.
Fluorochrome conjugated polyclonal anti-RFP can be used to detect RFP by immunofluorescence microscopy in cell expression systems and can detect RFP containing inserts. Significant amplification of signal is achieved using fluorochrome conjugated polyclonal anti-RFP relative to the fluorescence of RFP alone.
For immunoblotting use either alkaline phosphatase or peroxidase conjugated polyclonal anti-RFP to detect RFP or RFP containing proteins on western blots.
Optimal titers for applications should be determined by the researcher.

Beschränkungen Nur für Forschungszwecke einsetzbar
Format Liquid
Konzentration 1.0 mg/mL
Buffer 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2, 0.01% (w/v) Sodium Azide
Konservierungs-mittel Sodium azide
Vorsichtsmaßnahmen This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Handhabung Avoid cycles of freezing and thawing.
Lagerung 4 °C/-20 °C
Informationen zur Lagerung Store vial at -20° C prior to opening. Aliquot contents and freeze at -20° C or below for extended storage. Centrifuge product if not completely clear after standing at room temperature. This product is stable for several weeks at 4° C as an undiluted liquid. Dilute only prior to immediate use.
Haltbarkeit 12 months
Image no. 1 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Western Blot of Rabbit anti-RFP antibody. Marker: Opal Pre-stained ladder. Lane 1: HE...
Image no. 2 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Immunofluorescence Microscopy of Rabbit Anti-RFP antibody. Tissue: HopERCre/+, R26Tom...
Image no. 3 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Immunofluorescence Microscopy of Rabbit Anti-RFP antibody. Tissue: DsRed transgenic m...
Image no. 4 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Immunofluorescence Microscopy of Rabbit Anti-RFP antibody. Tissue: (10X) Mouse E14.5 ...
Image no. 5 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Immunofluorescence Microscopy of Rabbit Anti-RFP antibody. Tissue: (10X) Mouse lung t...
Image no. 6 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Immunohistochemistry of Anti-RFP Antibody. Tissue: Mouse gut tissue in tomato transge...
Image no. 7 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Western Blot of Rabbit Anti-RFP MW hu, ms, rt Antibody. Lane 1: Opal Prestained Molec...
Image no. 8 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Western blot of RFP recombinant protein detected with polyclonal anti-RFP antibody. L...
Image no. 9 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Western Blot of Rabbit anti-RFP Antibody. Lane 1: Opal Prestained Marker. Lane 2: 50 ...
Image no. 10 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) ELISA Results of Polyclonal Rabbit Anti-RFP Antibody tested against purified RFP prot...
Image no. 11 for anti-Red Fluorescent Protein (RFP) antibody (ABIN129578) Western Blot of RFP Antibody Pre-Absorbed. Lane 1: RFP (ABIN964533). Lane 2: Human Ig...
Produkt verwendet in: Bellomo, Mondor, Spinelli, Lagueyrie, Stewart, Brouilly, Malissen, Clatworthy, Bajénoff: "Reticular Fibroblasts Expressing the Transcription Factor WT1 Define a Stromal Niche that Maintains and Replenishes Splenic Red Pulp Macrophages." in: Immunity, Vol. 53, Issue 1, pp. 127-142.e7, 2020 (PubMed).

Eun, Hong, Jeong, Park, Hwang, Jeong, Choi, Olsson, Hwang, Hyun, Kim: "Transcriptional activities of human elongation factor-1α and cytomegalovirus promoter in transgenic dogs generated by somatic cell nuclear transfer." in: PLoS ONE, Vol. 15, Issue 6, pp. e0233784, 2020 (PubMed).

Fu, Wang, Chouairi, Rose, Abetov, Miller, Yamulla, Schimenti, Flesken-Nikitin, Nikitin: "Gastric squamous-columnar junction contains a large pool of cancer-prone immature osteopontin responsive Lgr5-CD44+ cells." in: Nature communications, Vol. 11, Issue 1, pp. 84, 2020 (PubMed).

Schaub, Rose, Frasch: "Yorkie and JNK revert syncytial muscles into myoblasts during Org-1-dependent lineage reprogramming." in: The Journal of cell biology, Vol. 218, Issue 11, pp. 3572-3582, 2020 (PubMed).

Green, Cavey, Médina Caturegli, Aigouy, Gompel, Prudhomme: "Evolution of Ovipositor Length in Drosophila suzukii Is Driven by Enhanced Cell Size Expansion and Anisotropic Tissue Reorganization." in: Current biology : CB, Vol. 29, Issue 12, pp. 2075-2082.e6, 2020 (PubMed).

Henschke, Pakan: "Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas." in: eLife, Vol. 9, 2020 (PubMed).

Zhou, Zhong, Peng, Liu, Ding, Sun, Ma, Liu, Chen, Wu, Wang: "Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus." in: Nature communications, Vol. 11, Issue 1, pp. 4063, 2020 (PubMed).

Klouda, Condon, Hao, Tian, Lvova, Chakraborty, Nicolls, Zhou, Raby, Yuan: "From 2D to 3D: Promising Advances in Imaging Lung Structure." in: Frontiers in medicine, Vol. 7, pp. 343, 2020 (PubMed).

Ricci, Tycksen, Celik, Belle, Fontana, Civitelli, Faccio: "Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics." in: eLife, Vol. 9, 2020 (PubMed).

Kennedy, Rinker, Broadie: "Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model." in: BMC biology, Vol. 18, Issue 1, pp. 94, 2020 (PubMed).

Bruens, Ellenbroek, Suijkerbuijk, Azkanaz, Hale, Toonen, Flanagan, Sansom, Snippert, van Rheenen: "Calorie Restriction Increases the Number of Competing Stem Cells and Decreases Mutation Retention in the Intestine." in: Cell reports, Vol. 32, Issue 3, pp. 107937, 2020 (PubMed).

Kim, Brünner, Carlén: "The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents." in: Scientific reports, Vol. 10, Issue 1, pp. 11838, 2020 (PubMed).

Browning, Derr, Derr, Doudican, Michael, Lish, Taylor, Krueger, Ferrer, Carucci, Gareau: "A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue." in: Oncotarget, Vol. 11, Issue 27, pp. 2587-2596, 2020 (PubMed).

Lau, Li, Danai, Westermark, Darnell, Ferreira, Gocheva, Sivanand, Lien, Sapp, Mayers, Biffi, Chin, Davidson, Tuveson, Jacks, Matheson, Yilmaz, Vander Heiden: "Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma." in: eLife, Vol. 9, 2020 (PubMed).

Kao, Xu, Wang, Lin, Lee, Duraine, Bellen, Goldstein, Tsai, Tsai: "Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson's disease through mitochondrial dysfunction." in: PLoS genetics, Vol. 16, Issue 6, pp. e1008868, 2020 (PubMed).

Singla, Iwamoto-Stohl, Zhu, Zernicka-Goetz: "Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism." in: Nature communications, Vol. 11, Issue 1, pp. 2958, 2020 (PubMed).

Tu, Duan, Song, Xie: "Dlp-mediated Hh and Wnt signaling interdependence is critical in the niche for germline stem cell progeny differentiation." in: Science advances, Vol. 6, Issue 20, pp. eaaz0480, 2020 (PubMed).

Cymerblit-Sabba, Smith, Williams Avram, Stackmann, Korgan, Tickerhoof, Young: "Inducing Partner Preference in Mice by Chemogenetic Stimulation of CA2 Hippocampal Subfield." in: Frontiers in molecular neuroscience, Vol. 13, pp. 61, 2020 (PubMed).

Wang, Wang, Zhong, Zhu, Zheng, Zhao, Xie, Ma, Li, Tang, Xu, Tian, Zhu: "Using apelin-based synthetic Notch receptors to detect angiogenesis and treat solid tumors." in: Nature communications, Vol. 11, Issue 1, pp. 2163, 2020 (PubMed).

Guan, Quiñones-Frías, Akbergenova, Littleton: "Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner." in: eLife, Vol. 9, 2020 (PubMed).

'Independent Validation' Siegel
Antigen RFP
Chargennummer 34945
Validierte Anwendung Immunofluorescence
Positivkontrolle CX3CL1mcherry+ murine thymus
Negativkontrolle CX3CL1 WT murine thymus

Passed. The RFP antibody ABIN129578 specifically labels RFP+ cells in CX3CL1mcherry+ murine thymus in immunofluorescence, consistent with the expression pattern of CX3CL1mcherry.

Primärantikörper ABIN1043867
Sekundärantikörper donkey Fab'2 anti-rabbit A647 conjugated antibody (Jackson Immunoresearch, 711-606-152, lot 128806)
  • Harvest thymus from 7 weeks old mice in 1X Dulbecco's phosphate buffered saline (DPBS) (Gibco Life Technologies, 14200-067).
  • Fix mouse thymus in antigen fix (Diapath, P0014) for 2h at 4?C.
  • Wash tissue in 0.1M pH7.4 phosphate buffer at for 1h at 4?C.
  • Dehydrate tissue in 30% sucrose solution at 4?C ON.
  • Snap freeze tissue in Tissue Freezing Medium (ElectroMicroscopy Science, 72592-C) at -80?C.
  • Cut blocks into 25?m sections using a cryostat (Leica, CM3050 S).
  • Transfer sections to a slide.
  • Create a hydrophobic barrier on the slide around sections with Dako pen (Dako, S2002, lot 00081640).
  • Place slide in a humidified chamber and rehydrate sections in 0.1 M TrisHCl pH7.4 for 10min at RT.
  • Gently remove buffer by tapping slide.
  • Permeabilize tissue in 0.1M TrisHCl pH7.4 containing 2% Triton X-100 (Sigma, lot 015K0039) and 0.5% BSA, for 20min at RT.
  • Incubate sections with primary RFP antibody (Red Fluorescent Protein) (AA 234) (antibodies-online, ABIN129578, lot 34945) diluted 1:1000 0.1M TrisHCl pH7.4 containing 2% Triton X-100 (Sigma, batch 015K0039) and 0.5% BSA for 2h at RT.
  • Incubate a no primary antibody negative control in parallel in 0.1M TrisHCl pH7.4 containing 2% Triton X-100 (Sigma, batch 015K0039) and 0.5% BSA.
  • Wash slides 1x 5min in 0.1M TrisHCl pH7.4.
  • Incubate sections with secondary donkey Fab'2 anti-rabbit AF647 conjugated antibody (Jackson Immunoresearch, 711-606-152, lot 128806) diluted 1:300 in 0.1M TrisHCl pH7.4 containing 2% Triton X-100 (Sigma, batch 015K0039) and 0.5% BSA for 2h at RT.
  • Wash slides 1x 5min in 0.1M TrisHCl pH7.4.
  • Add approximately 10µL of Slowfade Gold antifade reagent (ThermoFisher Scientific, S36937, lot 1226836) for each section and mount cover slip.
  • Image acquisition on an LSM 880 (Zeiss), 20x magnification, 1000 resolution.
Immunofluorescence validation image for anti-Red Fluorescent Protein (RFP) antibody (ABIN1043867) CX3CL1 positive cells in CX3CL1mcherry murine thymus (A, mCherry) were stained with A...