Telefon:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antikoerper-online.de

SARS-CoV-2 Life Cycle: Stages and Inhibition Targets

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the enveloped positive-sense RNA viruses. This virus is characterized by club-like spikes on the surface, and a unique replication strategy. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets.1

In the following the replication cycle of SARS-CoV-2 is explained together with possible inhibitors and their respective targets. This compilation is based on current literature however we make no claim to accuracy.

SARS-CoV-2 Replication Cycle

SARS-CoV-2 Life Cycle: Stages and Inhibition Targets

SARS-Cov-2 Replication Cycle and Inhibitors. Possible targets for inhibitors are marked in red and numbered in roman numerals. Click here to enlarge view

Get Expert Advice!

400+ labs in Diagnostics, Pharma, Academia have used our SARS-CoV-2 research tools. Let us share our insights with you!

This field is required

Virus Entry (1)

SARS-CoV-2 can hijack the cell in two ways, either via endosomes or via plasma membrane fusion. (In both ways) Spike proteins (S1, S2) of SARS-CoV-2 mediate attachment to the membrane of a host cell and engage angiotensin-converting enzyme 2 (ACE2) as the entry receptor.1 Inhibitors like Griffithsin (Inhibitor III) bind to the spike glycoprotein, thus preventing viral entry. Cell surface vimentin (VIM) acts as a critical co-receptor and is essential for successful ACE-2 binding.2 Binding of heparan sulfate (HS) to the receptor binding domain (RBD) enhances binding to ACE2 as well. Viral adhesion may be inhibited by by exogenous heparin. Heparin competes with HS for binding of the SARS-CoV-2 S protein.3

When virions are taken up into endosomes, cathepsin L activates the spike protein. the pH dependent cysteine protease can be blocked by lysosomotropic agents, like bafilomycin A1 or ammonium chloride (Inhibitor Classes IV,V) Alternatively, the spike protein can cleaved between the S1 and S2 domains by the cellular serine protease TMPRSS2 in close proximity to the ACE2 receptor, which initiates fusion of the viral membrane with the plasma membrane (Inhibitor II: Camostat). 1 The plasma membrane fusion entry is less likely to trigger host cell antiviral immunity and therefore more efficient for viral replication. 4

COVID-19 Spike-ACE2 Binding Assay Kit

COVID-19 Spike-ACE2 binding assay kit is a rapid, simple, and sensitive method to characterize the binding affinity of the S protein and the ACE2 receptor complex in the presence of potential inhibitors.

Show product details

Related Products: SARS-CoV-2 Spike Proteins | SARS-CoV-2 Neutralizing Antibodies | SARS-CoV-2 S1 Protein Mutations | ACE2 Antibodies | TMPRSS2 Antibodies

Produkt
Kat. Nr.
Klonalität
Applikation
Validierungen
Menge
Kat. Nr.ABIN4369881
Klonalität
ApplikationAP, AA, ELISA, WB
Validierungen
  • collections(1)
Menge2 μg
Kat. Nr.ABIN367135
Klonalität
ApplikationELISA
Validierungen
  • (3)
  • collections(1)
Menge96 tests
Kat. Nr.ABIN3187471
KlonalitätPolyclonal
ApplikationELISA, IF, IHC, WB
Validierungen
  • collections(2)
Menge100 μL
Kat. Nr.ABIN1871674
KlonalitätPolyclonal
ApplikationICC, IHC, WB
Validierungen
  • collections(3)
Menge100 μL
Kat. Nr.ABIN1169446
KlonalitätPolyclonal
ApplikationELISA, WB
Validierungen
  • (1)
  • collections(1)
Menge100 μg
Kat. Nr.ABIN1169449
KlonalitätMonoclonal
ApplikationFACS, ELISA, WB
Validierungen
  • (2)
  • collections(3)
Menge100 μg

Translation of Viral Replication Machinery (2) and Replication (3)

After the viral RNA is released into the host cell, polyproteins are translated. The coronavirus genomic RNA encodes nonstructural proteins (NSPs) that have a critical role in viral RNA synthesis, and structural proteins which are important for virion assembly. First, polyproteins pp1a and pp1ab, are translated which are cleaved by the Papain-like protease (Pl pro ) and 3C-like protease(3CL pro ) (Inhibitor VIII) to form functional NSPs as Helicase or the RNA replicase–transcriptase complex (RdRp). 5 RdRp especially can be inhibited by virostatica like Favipiravir or Penciclovir (Inhibitor VI) ; the replication of viral RNA in general by kinase signaling pathway inhibitors like Saracatinib (Inhibitor VII). 6 Expression level of N protein can be decreased by resveratrol (Inhibitor X). 7

Related Products: SARS-CoV-2 Non-Structural Proteins | SARS-CoV-2 N Proteins | SARS-CoV-2 N Antibodies

SARS-CoV-2 S Mutation Proteins

We support your research with reliable SARS-CoV-2 mutation proteins. B.1.1.7 / P.1 / B.1.351 / S Protein wild type. 400+ labs in diagnostics, pharma, academia have used our SARS-CoV-2 research tools.

Explore our variety of mutation proteins
Produkt
Kat. Nr.
Klonalität
Source
Validierungen
Menge
Kat. Nr.ABIN6953160
Klonalität
SourceEscherichia coli (E. coli)
Validierungen
  • collections(4)
Menge1 mg
Kat. Nr.ABIN1382276
Klonalität
Source
Validierungen
Menge0.05 mg
Kat. Nr.ABIN6953059
KlonalitätChimeric
SourceRabbit
Validierungen
  • (1)
  • collections(1)
Menge200 μg
Kat. Nr.ABIN6952432
KlonalitätMonoclonal
SourceMouse
Validierungen
  • (2)
  • collections(2)
Menge0.1 mg
Kat. Nr.ABIN6952664
KlonalitätChimeric
SourceHEK-293 Cells
Validierungen
Menge100 μL
Kat. Nr.ABIN1031551
KlonalitätPolyclonal
SourceRabbit
Validierungen
  • (8)
  • collections(8)
Menge0.1 mg

Translation of Viral Structure Proteins (4) and Virion Assembly (5)

RdRp is responsible for replication of structural protein RNA. Structural proteins S1, S2, Envelope (E), Membrane (M) are translated by ribosomes that are bound to the endoplasmic reticulum (ER) and presented on its surface as preparation of viron assembly. The nucleocapsids (N) remain in cytoplasm and are assembled from genomic RNA. They fuse with the virion precursor which is then transported from the ER through the Golgi Apparatus to the cell surface via small vesicles.

Related Products: SARS-CoV-2 Spike Proteins | SARS-CoV-2 S1 Protein Mutations | SARS-CoV-2 S Antibodies

Produkt
Kat. Nr.
Klonalität
Source
Validierungen
Menge
Kat. Nr.ABIN6953166
Klonalität
SourceYeast
Validierungen
  • collections(5)
Menge1 mg
Kat. Nr.ABIN6953168
Klonalität
SourceMammalian Cells
Validierungen
  • collections(5)
Menge1 mg
Kat. Nr.ABIN6952670
Klonalität
SourceHEK-293 Cells
Validierungen
  • collections(2)
Menge100 μg
Kat. Nr.ABIN6952546
KlonalitätMonoclonal
SourceHuman
Validierungen
  • (8)
  • collections(5)
Menge200 μg
Kat. Nr.ABIN6952547
KlonalitätChimeric
SourceRabbit
Validierungen
  • (7)
  • collections(3)
Menge200 μg

Release of Virus (6)

Virions are then released from the infected cell through exocytosis and search a another host cell. Oseltamivir inhibits cleavage of sialic acids by neuroamidase from the cell receptors thus preventing release of newly formed (influenza) virions from the cell surface (Inhibitor XI). 8

Need Help? Call our PhD Customer Support!

  • We help you with finding the right product for your research.
  • We offer reliable antibodies, kits, proteins, lysates for COVID-19 research.
  • Contact us via email or phone: (877) 302 8632 (US) or +49 241 95 163 153 (International)

Related Information and Products

SARS-CoV-2 Neutralizing Antibodies based on CR3022

Mutations of SARS-CoV-2 S Protein

SARS-CoV-2 ELISA Kits

SARS-CoV Protein Interactome / poster and products

SARS-CoV-2 RT-PCR Kits and qPCR Kits

Coronavirus HCoV-EMC/2012 Proteome Microarray (ABIN6936258)

References

  • (1) Hoffmann et al.: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell (2020), PDF
  • Suprewicz et al.: Vimentin binds to SARS-CoV-2 spike protein and antibodies targeting extracellular vimentin block in vitro uptake of SARS-CoV-2 virus-like particles, BioRxiv preprint (2021), [DOI]
  • (2) Henderson et al: Controlling the SARS-CoV-2 Spike Glycoprotein Conformation, Nat Struct Mol Biol. (2021), [ DOI]
  • (3) Shirato, K., Kawase, M. & Matsuyama, S.: Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry, Virology 517, 9–15 (2018), [ DOI]
  • (4) Zhavoronkov et al.: Potential COVID-2019 3C-like Protease Inhibitors Designed Using Generative Deep Learning Approaches, ChemRxiv (2020), [ DOI]
  • (5) Shin et al.: Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro, Viruses, 10(6):283 (2018), [ DOI]
  • (6) Lin, S. C., Ho, C. T., Chuo, W. H., Li, S., Wang, T. T., & Lin, C. C. : Effective inhibition of MERS-CoV infection by resveratrol, BMC Infectious Diseases, 17(1)(2017), [ DOI]
  • (7) McKimm‐Breschkin: Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses 7(Suppl. 1), 25–36., [ PMC]
Julian Pampel
Sie sind hier: