Telefon:
+49 (0)241 95 163 153
Fax:
+49 (0)241 95 163 155
E-Mail:
orders@antikoerper-online.de

SCNN1A Antikörper (AA 629-650)

SCNN1A Reaktivität: Ratte WB, IHC, IF, ICC Wirt: Kaninchen Polyclonal unconjugated
Produktnummer ABIN863204
  • Target Alle SCNN1A Antikörper anzeigen
    SCNN1A (Sodium Channel, Nonvoltage-Gated 1 alpha (SCNN1A))
    Bindungsspezifität
    • 60
    • 22
    • 20
    • 10
    • 10
    • 7
    • 2
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    AA 629-650
    Reaktivität
    • 95
    • 45
    • 39
    • 20
    • 10
    Ratte
    Wirt
    • 80
    • 41
    Kaninchen
    Klonalität
    • 80
    • 41
    Polyklonal
    Konjugat
    • 27
    • 11
    • 10
    • 10
    • 10
    • 10
    • 9
    • 9
    • 9
    • 9
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    Dieser SCNN1A Antikörper ist unkonjugiert
    Applikation
    • 111
    • 99
    • 34
    • 33
    • 32
    • 21
    • 10
    • 4
    • 2
    • 1
    • 1
    • 1
    • 1
    Western Blotting (WB), Immunohistochemistry (IHC), Immunofluorescence (IF), Immunocytochemistry (ICC)
    Spezifität
    Detects ~83 kDa.
    Kreuzreaktivität
    Hamster, Human, Maus, Ratte, Xenopus laevis
    Aufreinigung
    Protein A Purified
    Immunogen
    Produced against the C-terminal tail (amino acids 629-650) of rat gamma ENaC (antibody designation L550)
    Top Product
    Discover our top product SCNN1A Primärantikörper
  • Applikationshinweise
    • WB (1:1000)
    • IHC (1:100)
    • optimal dilutions for assays should be determined by the user.
    Kommentare

    1 μg/ml of ABIN863204 was sufficient for detection of gamma-ENaC in 20 μg of rat kidney tissue lysate by colorimetric immunoblot analysis using Goat anti-rabbit IgG:HRP as the secondary antibody.

    Beschränkungen
    Nur für Forschungszwecke einsetzbar
  • Format
    Liquid
    Konzentration
    1 mg/mL
    Buffer
    PBS, 50 % glycerol, 0.09 % sodium azide, Storage buffer may change when conjugated
    Konservierungsmittel
    Sodium azide
    Vorsichtsmaßnahmen
    This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
    Lagerung
    -20 °C
    Informationen zur Lagerung
    -20°C
  • Khedr, Palygin, Pavlov, Blass, Levchenko, Alsheikh, Brands, El-Meanawy, Staruschenko: "Increased ENaC activity during kidney preservation in Wisconsin solution." in: BMC nephrology, Vol. 20, Issue 1, pp. 145, (2020) (PubMed).

    Blass, Klemens, Brands, Palygin, Staruschenko: "Postprandial Effects on ENaC-Mediated Sodium Absorption." in: Scientific reports, Vol. 9, Issue 1, pp. 4296, (2019) (PubMed).

    Pavlov, Levchenko, Ilatovskaya, Moreno, Staruschenko: "Renal sodium transport in renin-deficient Dahl salt-sensitive rats." in: Journal of the renin-angiotensin-aldosterone system : JRAAS, Vol. 17, Issue 3, (2017) (PubMed).

    Zhang, Sun, Ding, Huang, Zhang, Jia: "Inhibition of Mitochondrial Complex-1 Prevents the Downregulation of NKCC2 and ENaCα in Obstructive Kidney Disease." in: Scientific reports, Vol. 5, pp. 12480, (2015) (PubMed).

    Carattino, Mueller, Palmer, Frindt, Rued, Hughey, Kleyman: "Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease." in: American journal of physiology. Renal physiology, Vol. 307, Issue 9, pp. F1080-7, (2014) (PubMed).

    Xu, Barone, Brooks, Soleimani: "Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion." in: Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, Vol. 32, Issue 7, pp. 173-83, (2014) (PubMed).

    Hye Khan, Pavlov, Christain, Neckář, Staruschenko, Gauthier, Capdevila, Falck, Campbell, Imig: "Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition." in: Clinical science (London, England : 1979), Vol. 127, Issue 7, pp. 463-74, (2014) (PubMed).

    Davies, Fraser, Galic, Choy, Katerelos, Gleich, Kemp, Mount, Power: "Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK." in: American journal of physiology. Renal physiology, Vol. 307, Issue 1, pp. F96-F106, (2014) (PubMed).

    Ramkumar, Stuart, Rees, Hoek, Sigmund, Kohan: "Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension." in: American journal of physiology. Renal physiology, Vol. 307, Issue 8, pp. F931-8, (2014) (PubMed).

    Pavlov, Levchenko, Staruschenko: "Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption." in: The Journal of biological chemistry, Vol. 289, Issue 41, pp. 28651-9, (2014) (PubMed).

    Collier, Tomkovicz, Peterson, Benson, Snyder: "Intersubunit conformational changes mediate epithelial sodium channel gating." in: The Journal of general physiology, Vol. 144, Issue 4, pp. 337-48, (2014) (PubMed).

    Roos, Bugaj, Mironova, Stockand, Ramkumar, Rees, Kohan: "Adenylyl cyclase VI mediates vasopressin-stimulated ENaC activity." in: Journal of the American Society of Nephrology : JASN, Vol. 24, Issue 2, pp. 218-27, (2013) (PubMed).

    Pavlov, Ilatovskaya, Levchenko, Li, Ecelbarger, Staruschenko: "Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct." in: FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Vol. 27, Issue 7, pp. 2723-32, (2013) (PubMed).

    Miller, Loewy: "ENaC γ-expressing astrocytes in the circumventricular organs, white matter, and ventral medullary surface: sites for Na+ regulation by glial cells." in: Journal of chemical neuroanatomy, Vol. 53, pp. 72-80, (2013) (PubMed).

    van der Lubbe, Lim, Meima, van Veghel, Rosenbaek, Mutig, Danser, Fenton, Zietse, Hoorn: "Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway." in: Pflügers Archiv : European journal of physiology, Vol. 463, Issue 6, pp. 853-63, (2012) (PubMed).

    Yu, Thelin, Rogers, Stutts, Randell, Grubb, Boucher: "Regional differences in rat conjunctival ion transport activities." in: American journal of physiology. Cell physiology, Vol. 303, Issue 7, pp. C767-80, (2012) (PubMed).

    Soleimani, Barone, Xu, Shull, Siddiqui, Zahedi, Amlal: "Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure." in: Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, Issue 33, pp. 13368-73, (2012) (PubMed).

    Edinger, Bertrand, Rondandino, Apodaca, Johnson, Butterworth: "The epithelial sodium channel (ENaC) establishes a trafficking vesicle pool responsible for its regulation." in: PLoS ONE, Vol. 7, Issue 9, pp. e46593, (2012) (PubMed).

    Ilatovskaya, Pavlov, Levchenko, Negulyaev, Staruschenko: "Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3 complex." in: FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Vol. 25, Issue 8, pp. 2688-99, (2011) (PubMed).

  • Target
    SCNN1A (Sodium Channel, Nonvoltage-Gated 1 alpha (SCNN1A))
    Andere Bezeichnung
    ENaC (SCNN1A Produkte)
    Synonyme
    BESC2 antikoerper, ENaCa antikoerper, ENaCalpha antikoerper, SCNEA antikoerper, SCNN1 antikoerper, ENaC antikoerper, Scnn1 antikoerper, mENaC antikoerper, SCNN1A antikoerper, alphaxENaC antikoerper, besc2 antikoerper, enaca antikoerper, scnn1 antikoerper, ENAC antikoerper, sodium channel epithelial 1 alpha subunit antikoerper, sodium channel, nonvoltage-gated 1 alpha antikoerper, sodium channel, non voltage gated 1 alpha subunit L homeolog antikoerper, Scnn1a antikoerper, SCNN1A antikoerper, scnn1a.L antikoerper
    Hintergrund
    The Epithelial Sodium Channel (ENaC) is a membrane ion channel permeable to Na+ ions. It is located in the apical plasma membrane of epithelia in the kidneys, lung, colon, and other tissues where it plays a role in trans epithelial Na+-ion transport (1). Specifically Na+ transport via ENaC occurs across many epithelial surfaces, and plays a key role in regulating salt and water absorption (2). ENaCs are composed of three structurally related subunits that form a tetrameric channel, α, β, and γ. The expression of its alpha and beta subunits is enhanced as keratinocytes differentiate (3, 4). The beta and gamma-ENaC subunits are essential for edema fluid to exert its maximal effect on net fluid absorption by distal lung epithelia(5). And it has been concluded that the subunits are differentially expressed in the retina of mice with ocular hypertension, therefore the up-regulation of alpha-ENaC proteins could serve as a protection mechanism against elevated intraocular pressure (6).
    Gen-ID
    24768
    NCBI Accession
    NP_058742
    UniProt
    P37091
Sie sind hier:
Kundenservice