You are viewing an incomplete version of our website. Please click to reload the website as full version.

RFP-Booster (Atto 594)

Details zu Produkt Nr. ABIN1082216, Anbieter: Anmelden zum Anzeigen
Antigen
Reaktivität
Discosoma
Antikörpertyp
Recombinant Antibody
Konjugat
Atto 594
Applikation
Fluorescence Microscopy (FM), Immunofluorescence (IF)
Hersteller
Anmelden zum Anzeigen
Hersteller Produkt- Nr.
Anmelden zum Anzeigen
Request

Teilen Sie Ihre Ergebnisse, helfen Sie anderen Wissenschaftlern und erhalten Sie den vollen Produktpreis zurück.

Validieren Sie ein Produkt

Mehr erfahren

Bilder

Verwendungszweck With our Booster you reactivate, boost, stabilizate the signals of your fusion proteins.
Spezifität RFP-Booster efficiently highlights, enhancesand stabilizes monomeric red fluorescentproteins such as mRFP1, mCherry or mPlum but also mRuby
Produktmerkmale
  • Enhance, stabilize and reactivate your fl uorescent proteins
  • RFP-Booster high specifi city for various monomeric red fl uorescent proteins derived from DsRed
  • Coupled to bright and photostable chemical dyes from ATTO-TEC
Bestandteile RFP-Trap® coupled to fluorescent dye ATTO 594
Andere Bezeichnung RFP
Hintergrund Red fluorescent proteins (RFP) and variants thereof are widely used to study protein localization and dynamics in living cells. However, photo stability and quantum efficiency of RFP are not sufficient for Super-Resolution Microscopy (e.g. 3D-SIM or STED) of fixed samples. In addition, many cell biological methods such as BrdU-staining, EdU-Click-iT™ treatment or Fluorescent In Situ Hybridization result in disruption of the RFP signal.The RFP-Booster_Atto594, a specific RFP-binding protein coupled to the fluorescent dye ATTO 594, reactivates, boosts and stabilizes your RFP signal.
Forschungsgebiet Tags/Labels
Applikationshinweise For the immunofluorescence staining of RFP-fusion proteins in fixed cells
Kommentare

Booster are very small, highly specific GFP- or RFP-binding proteins covalently coupled to the superior fluorescent dyes from ATTO-TEC.

Testdurchführung
  • 1. Fixation: 4% paraformaldehyde (PFA) or 1:10 formalin (37% formaldehyde, 10-15% MetOH) in PBS, 10 min., RT.
  • 2. Wash 3x with PBS containing 0.1% Tween 20 (PBST). Critical: do not let coverslips “dry”.
  • 3. Permeabilisation: PBS containing 0.5% Triton X-100, 5 min., RT. Alternatively, permeabilise by incubating in 100% methanol for 5 min at -20°C.
  • 4. Wash 2x with PBST.
  • 5. Blocking: 4% BSA in PBST, 10 min, RT.
  • 6. RFP-Booster incubation: dilute RFP-Booster 1:200 – 1:400 in blocking buffer and incubate 1 h, RT.
    Note: For multiplexing protocols you can combine RFP-Booster with any other antibody.
  • 7. Wash 3x 5-10 min in PBST.
  • 8. If required, counterstain with DNA fluorescent dyes, e.g. DAPI.
  • 9. Before mounting, coverslips can be very briefly rinsed in water to prevent salt crystals to form.
  • 10. Mount in VectaShield (Vector Labs) or other mounting media with anti-fading agents and seal mounted coverslips with clear nail polish.
Beschränkungen Nur für Forschungszwecke einsetzbar
Format Liquid
Konzentration 0.2 mg/ml
Buffer PBS, 0.01% Sodium azide
Konservierungsmittel Sodium azide
Vorsichtsmaßnahmen This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Handhabung Do not freeze. Protect from light.
Lagerung 4 °C
Haltbarkeit 6 months
Bilder des Herstellers
 image for RFP-Booster (Atto 594) (ABIN1082216) RFP-Booster specifically labels RFP-fusion proteins. HeLa cells expressing mRFP-PCNA,...
 image for RFP-Booster (Atto 594) (ABIN1082216) Enhancement of RFP signal with RFP-Booster_Atto594. Comparison of signal intensity of...
 image for RFP-Booster (Atto 594) (ABIN1082216) Improvement of RFP signal stability with RFP-Booster_Atto594. RFP fluorescence bleach...
Produkt verwendet in: Platonova, Winterflood, Junemann et al.: "Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders." in: Methods (San Diego, Calif.), 2015 (PubMed).

Vietri, Schink, Campsteijn et al.: "Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing." in: Nature, Vol. 522, Issue 7555, pp. 231-5, 2015 (PubMed).

Osterfield, Schüpbach, Wieschaus et al.: "Diversity of epithelial morphogenesis during eggshell formation in drosophilids." in: Development (Cambridge, England), Vol. 142, Issue 11, pp. 1971-7, 2015 (PubMed).

Winterflood, Ewers: "Single-Molecule Localization Microscopy using mCherry." in: Chemphyschem : a European journal of chemical physics and physical chemistry, Vol. 15, Issue 16, pp. 3447-51, 2014 (PubMed).

Bleck, Itano, Johnson et al.: "Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding." in: Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, Issue 33, pp. 12211-6, 2014 (PubMed).

Biermann, Sokoll, Klueva et al.: "Imaging of molecular surface dynamics in brain slices using single-particle tracking." in: Nature communications, Vol. 5, pp. 3024, 2014 (PubMed).

Franz, Roque, Saurya et al.: "CP110 exhibits novel regulatory activities during centriole assembly in Drosophila." in: The Journal of cell biology, Vol. 203, Issue 5, pp. 785-99, 2013 (PubMed).

Hasegawa, Ryu, Kaláb: "Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells." in: The Journal of cell biology, Vol. 200, Issue 2, pp. 151-61, 2013 (PubMed).

Weil, Parton, Herpers et al.: "Drosophila patterning is established by differential association of mRNAs with P bodies." in: Nature cell biology, Vol. 14, Issue 12, pp. 1305-13, 2012 (PubMed).

Ries, Kaplan, Platonova et al.: "A simple, versatile method for GFP-based super-resolution microscopy via nanobodies." in: Nature methods, Vol. 9, Issue 6, pp. 582-4, 2012 (PubMed).

Mikeladze-Dvali, von Tobel, Strnad et al.: "Analysis of centriole elimination during C. elegans oogenesis." in: Development (Cambridge, England), Vol. 139, Issue 9, pp. 1670-9, 2012 (PubMed).

Ridzuan, Moon, Knuepfer et al.: "Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development." in: PLoS ONE, Vol. 7, Issue 3, pp. e33845, 2012 (PubMed).

Cordes, Maiser, Steinhauer et al.: "Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy." in: Physical chemistry chemical physics : PCCP, Vol. 13, Issue 14, pp. 6699-709, 2011 (PubMed).

Guizetti, Schermelleh, Mäntler et al.: "Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments." in: Science (New York, N.Y.), Vol. 331, Issue 6024, pp. 1616-20, 2011 (PubMed).