Telefon:
+49 (0)241 95 163 153
Fax:
+49 (0)241 95 163 155
E-Mail:
orders@antikoerper-online.de

SMAD3 Antikörper (pSer423, pSer425)

SMAD3 Reaktivität: Human WB, ELISA, IHC Wirt: Kaninchen Polyclonal unconjugated
Produktnummer ABIN1043888
  • Target Alle SMAD3 Antikörper anzeigen
    SMAD3 (SMAD, Mothers Against DPP Homolog 3 (SMAD3))
    Bindungsspezifität
    • 34
    • 29
    • 28
    • 28
    • 20
    • 14
    • 14
    • 11
    • 11
    • 9
    • 8
    • 7
    • 6
    • 6
    • 5
    • 5
    • 4
    • 4
    • 3
    • 3
    • 3
    • 3
    • 3
    • 3
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    AA 417-425, pSer423, pSer425
    Reaktivität
    • 257
    • 150
    • 138
    • 28
    • 10
    • 9
    • 8
    • 8
    • 7
    • 5
    • 4
    • 3
    • 3
    • 2
    • 1
    • 1
    • 1
    Human
    Wirt
    • 248
    • 23
    Kaninchen
    Klonalität
    • 231
    • 40
    Polyklonal
    Konjugat
    • 138
    • 19
    • 14
    • 14
    • 12
    • 8
    • 6
    • 6
    • 6
    • 6
    • 6
    • 6
    • 4
    • 4
    • 4
    • 4
    • 4
    • 2
    • 2
    • 2
    • 2
    • 2
    Dieser SMAD3 Antikörper ist unkonjugiert
    Applikation
    • 231
    • 117
    • 108
    • 74
    • 59
    • 55
    • 55
    • 53
    • 28
    • 13
    • 10
    • 8
    • 5
    • 4
    • 2
    • 1
    Western Blotting (WB), ELISA, Immunohistochemistry (IHC)
    Kreuzreaktivität
    Xenopus laevis, Xenopus tropicalis, Zebrafisch (Brachydanio rerio), Ratte (Rattus), Maus, Schwein, Schaf, Huhn
    Produktmerkmale
    Concentration Definition: by UV absorbance at 280 nm
    Immunogen
    This affinity purified antibody was prepared from whole rabbit serum produced by repeated immunizations with a synthetic peptide corresponding to amino acids 417-425 of human SMAD3 protein.
    Isotyp
    IgG
  • Applikationshinweise
    This affinity purified antibody has been tested for use in ELISA, immunohistochemistry and by western blot.  Specific conditions for reactivity should be optimized by the end user. Expect a band approximately 48 kDa in size corresponding to phosphorylated Smad3 protein by western blotting in the appropriate stimulated tissue or cell lysate or extract.  Less than 0.2% reactivity is observed against the non-phosphorylated form of the immunizing peptide.  This antibody is phospho specific for dual phosphorylated pS423 and pS425 of Smad3. Stimulation with 2 ng/ml TGF-beta for 1 hour is suggested.
    Beschränkungen
    Nur für Forschungszwecke einsetzbar
  • Format
    Liquid
    Konzentration
    1.0 mg/mL
    Buffer
    0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2
    Konservierungsmittel
    Sodium azide
    Vorsichtsmaßnahmen
    This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
    Lagerung
    -20 °C
  • Hutchinson, Darling, Nicolaou, Gori, Squair, Cohen, Hill, Sapkota: "Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses." in: Cell death & disease, Vol. 11, Issue 1, pp. 49, (2020) (PubMed).

    Stappenbeck, Wang, Tang, Zhang, Parhami: "Inhibition of Non-Small Cell Lung Cancer Cells by Oxy210, an Oxysterol-Derivative that Antagonizes TGFβ and Hedgehog Signaling." in: Cells, Vol. 8, Issue 10, (2020) (PubMed).

    Feng, Tang, Huang, Sun, You, Xiao, Lv, Xu, Lan: "TGF-β Mediates Renal Fibrosis via the Smad3-Erbb4-IR Long Noncoding RNA Axis." in: Molecular therapy : the journal of the American Society of Gene Therapy, Vol. 26, Issue 1, pp. 148-161, (2019) (PubMed).

    Subramanian, Kanzaki, Galloway, Schilling: "Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling." in: eLife, Vol. 7, (2019) (PubMed).

    Gao, Kanasaki, Li, Kitada, Okazaki, Koya: "βklotho is essential for the anti-endothelial mesenchymal transition effects of N-acetyl-seryl-aspartyl-lysyl-proline." in: FEBS open bio, Vol. 9, Issue 5, pp. 1029-1038, (2019) (PubMed).

    Tang, Tang, Xu, Li, Deng, Zhang: "Generation of Smurf2 Conditional Knockout Mice." in: International journal of biological sciences, Vol. 14, Issue 5, pp. 542-548, (2018) (PubMed).

    Li, Chung, Li, Overstreet, Gagnon, Grouix, Leduc, Laurin, Zhang, Harris: "Fatty acid receptor modulator PBI-4050 inhibits kidney fibrosis and improves glycemic control." in: JCI insight, Vol. 3, Issue 10, (2018) (PubMed).

    Li, Shi, Srivastava, Kitada, Nagai, Nitta, Kohno, Kanasaki, Koya: "FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway." in: Cell death & disease, Vol. 8, Issue 8, pp. e2965, (2018) (PubMed).

    Chung, Overstreet, Li, Wang, Niu, Wang, Fan, Sasaki, Jin, Khodo, Gewin, Zhang, Harris: "TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration." in: JCI insight, Vol. 3, Issue 21, (2018) (PubMed).

    Tang, Heller, Meng, Yu, Tang, Zhou, Zhang: "Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway." in: The Journal of biological chemistry, Vol. 292, Issue 10, pp. 4302-4312, (2017) (PubMed).

    Subathra, Korrapati, Howell, Arthur, Shayman, Schnellmann, Siskind: "Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells." in: American journal of physiology. Renal physiology, Vol. 309, Issue 3, pp. F204-15, (2015) (PubMed).

    Luo, Xu, Chen, Warburton, Dong, Qian, Selman, Gauldie, Kolb, Shi: "A novel profibrotic mechanism mediated by TGFβ-stimulated collagen prolyl hydroxylase expression in fibrotic lung mesenchymal cells." in: The Journal of pathology, Vol. 236, Issue 3, pp. 384-94, (2015) (PubMed).

    Herhaus, Al-Salihi, Macartney, Weidlich, Sapkota: "OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3." in: Nature communications, Vol. 4, pp. 2519, (2014) (PubMed).

    Kawamura, Maeda, Imamura, Setoguchi, Yokouchi, Ishidou, Komiya: "SnoN suppresses maturation of chondrocytes by mediating signal cross-talk between transforming growth factor-β and bone morphogenetic protein pathways." in: The Journal of biological chemistry, Vol. 287, Issue 34, pp. 29101-13, (2012) (PubMed).

    Beckham, Tuttle, Tyler: "Reovirus activates transforming growth factor beta and bone morphogenetic protein signaling pathways in the central nervous system that contribute to neuronal survival following infection." in: Journal of virology, Vol. 83, Issue 10, pp. 5035-45, (2009) (PubMed).

    Coffman, Coluccio, Planchart, Robertson: "Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2." in: Developmental biology, Vol. 330, Issue 1, pp. 123-30, (2009) (PubMed).

    Yamashita, Fatyol, Jin, Wang, Liu, Zhang: "TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta." in: Molecular cell, Vol. 31, Issue 6, pp. 918-24, (2008) (PubMed).

    Shi, Massagué: "Mechanisms of TGF-beta signaling from cell membrane to the nucleus." in: Cell, Vol. 113, Issue 6, pp. 685-700, (2003) (PubMed).

  • Target
    SMAD3 (SMAD, Mothers Against DPP Homolog 3 (SMAD3))
    Andere Bezeichnung
    SMAD3 (SMAD3 Produkte)
    Synonyme
    HSPC193 antikoerper, HsT17436 antikoerper, JV15-2 antikoerper, LDS1C antikoerper, LDS3 antikoerper, MADH3 antikoerper, madh3 antikoerper, madh3a antikoerper, smad3 antikoerper, wu:fa99e03 antikoerper, XSmad3 antikoerper, XenMLP antikoerper, Xmad3 antikoerper, madh3-A antikoerper, Madh3 antikoerper, AU022421 antikoerper, Smad 3 antikoerper, mad3 antikoerper, madh3b antikoerper, zgc:92234 antikoerper, SMAD family member 3 antikoerper, SMAD family member 3a antikoerper, SMAD family member 3 L homeolog antikoerper, SMAD family member 3b antikoerper, SMAD3 antikoerper, smad3a antikoerper, smad3.L antikoerper, Smad3 antikoerper, smad3b antikoerper
    Hintergrund
    This antibody is designed, produced, and is suitable for Cancer, Immunology and Nuclear Signaling research. Smad3 (also known as Mothers against decapentaplegic homolog 3 Mothers against DPP homolog 3, Mad3, hMAD-3, JV15-2 or hSMAD3) is a transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinase.   These activators exert diverse effects on a wide array of cellular processes. The Smad proteins mediate much of the signaling responses induced by the TGF-b superfamily.  Briefly, activated type I receptor phosphorylates receptor-activated Smads (R-Smads) at their c-terminal two extreme serines in the SSXS motif, e.g. Smad2 and Smad3 proteins in the TGF-b pathway, or Smad1, Smad5 or Smad8 in the BMP pathway.  Then the phosphorylated R-Smad translocated into nucleus, where they regulate transcription of target genes.  Based on microarray and animal model experiments, Smad3 accounts for at least 80% of all TGF-b-mediated response.
    Synonyms: hMAD 3 antibody, hSMAD3 antibody, MADH3 antibody, MGC60396 antibody, Mothers against decapentaplegic homolog 3 antibody, Mothers against DPP homolog 3 antibody
    Gen-ID
    4088, 5174513
    UniProt
    P84022
    Pathways
    Zellzyklus, Chromatin Binding, Cell-Cell Junction Organization, Positive Regulation of Endopeptidase Activity, Autophagie
Sie sind hier:
Kundenservice